LORENE
ope_pois_tens_rr.C
1 /*
2  * Methods of class Ope_pois_tens_rr
3  *
4  * (see file ope_elementary.h for documentation)
5  *
6  */
7 
8 /*
9  * Copyright (c) 2004 Jerome Novak
10  *
11  * This file is part of LORENE.
12  *
13  * LORENE is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation.
16  *
17  * LORENE is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with LORENE; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25  *
26  */
27 
28 char ope_pois_tens_rr_C[] = "$Header: /cvsroot/Lorene/C++/Source/Ope_elementary/Ope_pois_vect_r/ope_pois_tens_rr.C,v 1.2 2014/10/13 08:53:34 j_novak Exp $" ;
29 
30 /*
31  * $Id: ope_pois_tens_rr.C,v 1.2 2014/10/13 08:53:34 j_novak Exp $
32  * $Log: ope_pois_tens_rr.C,v $
33  * Revision 1.2 2014/10/13 08:53:34 j_novak
34  * Lorene classes and functions now belong to the namespace Lorene.
35  *
36  * Revision 1.1 2004/12/23 16:30:15 j_novak
37  * New files and class for the solution of the rr component of the tensor Poisson
38  * equation.
39  *
40  *
41  *
42  * $Header: /cvsroot/Lorene/C++/Source/Ope_elementary/Ope_pois_vect_r/ope_pois_tens_rr.C,v 1.2 2014/10/13 08:53:34 j_novak Exp $
43  *
44  */
45 
46 #include"type_parite.h"
47 #include "ope_elementary.h"
48 
49 namespace Lorene {
50 Matrice ope_ptens_rr_mat(int , int , double , int, int ) ;
51 Tbl sh_ptens_rr(int, int, double, int) ;
52 Matrice cl_ptens_rr (const Matrice&, int, double, int, int) ;
53 Matrice nondeg_ptens_rr (const Matrice&, int, double, int, int) ;
54 Tbl val_solh (int, double, double, int) ;
55 
56 // Standard constructor :
57 Ope_pois_tens_rr::Ope_pois_tens_rr (int nbr, int baser, double alf, double bet, int lq, int dz):
58  Ope_poisson(nbr, baser, alf, bet, lq, dz)
59 {
60  assert (dzpuis == 4) ;
61  assert (l_quant > 1) ;
62 }
63 
64 // Constructor by copy :
66 {
67  assert (dzpuis == 4) ;
68  assert (l_quant > 1) ;
69 }
70 
71 // Destructor :
73 
74 // True functions :
76  if (ope_mat != 0x0)
77  delete ope_mat ;
78 
79  ope_mat = new Matrice
80  (ope_ptens_rr_mat(nr, l_quant, beta/alpha, dzpuis, base_r)) ;
81 }
82 
84  if (ope_mat == 0x0)
85  do_ope_mat() ;
86 
87  if (ope_cl != 0x0)
88  delete ope_cl ;
89 
90  ope_cl = new Matrice
91  (cl_ptens_rr(*ope_mat, l_quant, beta/alpha, dzpuis, base_r)) ;
92 }
93 
95  if (ope_cl == 0x0)
96  do_ope_cl() ;
97 
98  if (non_dege != 0x0)
99  delete non_dege ;
100 
101  non_dege = new Matrice
102  (nondeg_ptens_rr(*ope_cl, l_quant, beta/alpha, dzpuis, base_r)) ;
103 }
104 
106 
107  assert (l_quant > 1) ;
108  int l1 = l_quant - 2 ;
109  int l2 = l_quant + 2 ;
110 
111  Tbl valeurs1 (val_solh (l1, alpha, beta, base_r)) ;
112  Tbl valeurs2 (val_solh (l2, alpha, beta, base_r)) ;
113 
114  assert (valeurs1.get_ndim() == valeurs2.get_ndim()) ;
115 
116  if (valeurs1.get_ndim() == 2) {
117  // cas 2 sh
118  s_one_plus = valeurs1(0,0) ;
119  s_one_minus = valeurs1(0,1) ;
120  ds_one_plus = valeurs1(0,2) ;
121  ds_one_minus = valeurs1(0,3) ;
122 
123  s_two_plus = valeurs2(1,0) ;
124  s_two_minus = valeurs2(1,1) ;
125  ds_two_plus = valeurs2(1,2) ;
126  ds_two_minus = valeurs2(1,3) ;
127  }
128  else {
129  // cas 1 sh :
130  Tbl& valeurs = (base_r == R_CHEBU) ? valeurs2 : valeurs1 ;
131  s_one_plus = valeurs(0) ;
132  s_one_minus = valeurs(1) ;
133  ds_one_plus = valeurs(2) ;
134  ds_one_minus = valeurs(3) ;
135  }
136 
137  return sh_ptens_rr(nr, l_quant, beta/alpha, base_r) ;
138 }
139 
140 }
Lorene::Ope_elementary::ope_cl
Matrice * ope_cl
Pointer on the banded-matrix of the operator.
Definition: ope_elementary.h:118
Lorene::Ope_elementary::ds_one_plus
double ds_one_plus
Value of the derivative of the first homogeneous solution at the outer boundary.
Definition: ope_elementary.h:136
Lorene::Ope_pois_tens_rr::do_ope_cl
virtual void do_ope_cl() const
Computes the banded-matrix of the operator.
Definition: ope_pois_tens_rr.C:83
Lorene::Ope_pois_tens_rr::do_non_dege
virtual void do_non_dege() const
Computes the non-degenerated matrix of the operator.
Definition: ope_pois_tens_rr.C:94
Lorene::Ope_elementary::ds_one_minus
double ds_one_minus
Value of the derivative of the first homogeneous solution at the inner boundary.
Definition: ope_elementary.h:141
Lorene
Lorene prototypes.
Definition: app_hor.h:64
Lorene::Ope_elementary::base_r
int base_r
Radial basis of decomposition.
Definition: ope_elementary.h:107
Lorene::Ope_elementary::nr
int nr
Number of radial points.
Definition: ope_elementary.h:106
Lorene::Tbl::get_ndim
int get_ndim() const
Gives the number of dimensions (ie dim.ndim)
Definition: tbl.h:400
Lorene::Ope_elementary::s_one_plus
double s_one_plus
Value of the first homogeneous solution at the outer boundary.
Definition: ope_elementary.h:127
Lorene::Ope_elementary::s_two_plus
double s_two_plus
Value of the second homogeneous solution at the outer boundary.
Definition: ope_elementary.h:146
Lorene::Ope_elementary::beta
double beta
Parameter of the associated mapping.
Definition: ope_elementary.h:109
Lorene::Ope_elementary::ds_two_plus
double ds_two_plus
Value of the derivative of the second homogeneous solution at the outer boundary.
Definition: ope_elementary.h:155
Lorene::Ope_pois_tens_rr::do_ope_mat
virtual void do_ope_mat() const
Computes the matrix of the operator.
Definition: ope_pois_tens_rr.C:75
Lorene::Tbl
Basic array class.
Definition: tbl.h:161
Lorene::Ope_poisson
Class for the operator of the Poisson equation (i.e.
Definition: ope_elementary.h:325
Lorene::Ope_pois_tens_rr
Class for the operator of the rr component of the divergence-free tensor Poisson equation.
Definition: ope_elementary.h:679
Lorene::Ope_pois_tens_rr::Ope_pois_tens_rr
Ope_pois_tens_rr(int nbr, int baser, double alf, double bet, int lq, int dz)
Standard constructor.
Definition: ope_pois_tens_rr.C:57
Lorene::Ope_elementary::ds_two_minus
double ds_two_minus
Value of the derivative of the second homogeneous solution at the inner boundary.
Definition: ope_elementary.h:160
Lorene::Ope_elementary::s_two_minus
double s_two_minus
Value of the second homogeneous solution at the inner boundary.
Definition: ope_elementary.h:150
Lorene::Ope_poisson::dzpuis
int dzpuis
the associated dzpuis, if in the compactified domain.
Definition: ope_elementary.h:329
Lorene::Matrice
Matrix handling.
Definition: matrice.h:152
Lorene::Ope_poisson::l_quant
int l_quant
quantum number
Definition: ope_elementary.h:328
Lorene::Ope_pois_tens_rr::get_solh
virtual Tbl get_solh() const
Computes the homogeneous solutions(s).
Definition: ope_pois_tens_rr.C:105
Lorene::Ope_elementary::non_dege
Matrice * non_dege
Pointer on the non-degenerated matrix of the operator.
Definition: ope_elementary.h:122
R_CHEBU
#define R_CHEBU
base de Chebychev ordinaire (fin), dev. en 1/r
Definition: type_parite.h:180
Lorene::Ope_pois_tens_rr::~Ope_pois_tens_rr
virtual ~Ope_pois_tens_rr()
Destructor.
Definition: ope_pois_tens_rr.C:72
Lorene::Ope_elementary::s_one_minus
double s_one_minus
Value of the first homogeneous solution at the inner boundary.
Definition: ope_elementary.h:131
Lorene::Ope_elementary::ope_mat
Matrice * ope_mat
Pointer on the matrix representation of the operator.
Definition: ope_elementary.h:114
Lorene::Ope_elementary::alpha
double alpha
Parameter of the associated mapping.
Definition: ope_elementary.h:108